from dataclasses import dataclass
from typing import Optional, Sequence, Union
import numpy as np
from gempy.core.data._data_points_helpers import generate_ids_from_names
from gempy_engine.core.data.transforms import Transform
from gempy.optional_dependencies import require_pandas
DEFAULT_ORI_NUGGET = 0.01
# ? Maybe we should merge this with the SurfacePoints class from gempy_engine
[docs]
@dataclass
class OrientationsTable:
"""
A dataclass to represent a table of orientations in a geological model.
"""
data: np.ndarray #: A structured NumPy array holding the X, Y, Z coordinates, gradients G_x, G_y, G_z, id, and nugget of each orientation.
name_id_map: Optional[dict[str, int]] = None #: A mapping between orientation names and ids.
dt = np.dtype([('X', 'f8'), ('Y', 'f8'), ('Z', 'f8'), ('G_x', 'f8'), ('G_y', 'f8'), ('G_z', 'f8'), ('id', 'i4'), ('nugget', 'f8')]) #: The custom data type for the data array.
_model_transform: Optional[Transform] = None
@classmethod
def from_arrays(cls, x: np.ndarray, y: np.ndarray, z: np.ndarray,
G_x: np.ndarray, G_y: np.ndarray, G_z: np.ndarray,
names: Union[Sequence | str], nugget: Optional[np.ndarray] = None,
name_id_map: Optional[dict[str, int]] = None) -> 'OrientationsTable':
data, name_id_map = cls._data_from_arrays(x, y, z, G_x, G_y, G_z, names, nugget, name_id_map)
return cls(data, name_id_map)
@classmethod
def _data_from_arrays(cls, x, y, z, G_x, G_y, G_z, names, nugget, name_id_map=None) -> tuple[np.ndarray, dict[str, int]]:
if nugget is None:
nugget = np.zeros_like(x) + DEFAULT_ORI_NUGGET
if name_id_map is None:
ids, name_id_map = generate_ids_from_names(name_id_map, names, x)
else:
ids = np.array([name_id_map[name] for name in names])
data = np.zeros(len(x), dtype=OrientationsTable.dt)
data['X'], data['Y'], data['Z'], data['G_x'], data['G_y'], data['G_z'], data['id'], data['nugget'] = x, y, z, G_x, G_y, G_z, ids, nugget
return data, name_id_map
@classmethod
def initialize_empty(cls) -> 'OrientationsTable':
return cls(np.zeros(0, dtype=OrientationsTable.dt))
@property
def xyz(self) -> np.ndarray:
return np.array([self.data['X'], self.data['Y'], self.data['Z']]).T
@property
def grads(self) -> np.ndarray:
return np.array([self.data['G_x'], self.data['G_y'], self.data['G_z']]).T
@property
def nugget(self) -> np.ndarray:
return self.data['nugget']
@property
def ids(self) -> np.ndarray:
return self.data['id']
def get_orientations_by_name(self, name: str) -> 'OrientationsTable':
return self.get_orientations_by_id(self.name_id_map[name])
def get_orientations_by_id(self, id: int) -> 'OrientationsTable':
return OrientationsTable(self.data[self.data['id'] == id], self.name_id_map)
def get_orientations_by_id_groups(self) -> list['OrientationsTable']:
ids = np.unique(self.data['id'])
return [self.get_orientations_by_id(id) for id in ids]
@classmethod
def fill_missing_orientations_groups(cls, orientations_groups: list['OrientationsTable'],
surface_points_groups: list['SurfacePointsTable']) -> list['OrientationsTable']:
# region Deal with elements without orientations
if len(surface_points_groups) > len(orientations_groups):
# Check the ids of the surface points and find the missing ones
surface_points_ids = [surface_points_group.id for surface_points_group in surface_points_groups]
orientations_ids = [orientations_group.id for orientations_group in orientations_groups]
missing_ids = list(set(surface_points_ids) - set(orientations_ids))
empty_orientations = [cls(data=np.zeros(0, dtype=cls.dt)) for id in missing_ids] # Create empty orientations
for empty_orientation, id in zip(empty_orientations, missing_ids): # Insert the empty orientations in the right position
orientations_groups.insert(id, empty_orientation)
# endregion
return orientations_groups
@classmethod
def empty_orientation(cls, id: int) -> 'OrientationsTable':
zeros = np.zeros(0, dtype=cls.dt)
zeros['id'] = id
return cls(data=zeros, name_id_map={})
@property
def id(self) -> int:
# Check id is the same in the whole column and return it or throw an error
ids = np.unique(self.data['id'])
if len(ids) > 1:
raise ValueError(f"OrientationsTable contains more than one id: {ids}")
if len(ids) == 0:
raise ValueError(f"OrientationsTable contains no ids")
return ids[0]
@property
def model_transform(self) -> Transform:
if self._model_transform is None:
raise ValueError("Model transform is not set. If you want to use this property use GeoModel.surface_points to get the SurfaceTable with transform attached.")
return self._model_transform
@model_transform.setter
def model_transform(self, value: Transform):
self._model_transform = value
@property
def df(self) -> 'pd.DataFrame':
pd = require_pandas()
return pd.DataFrame(self.data)
def __str__(self):
return "\n" + np.array2string(self.data, precision=2, separator=',', suppress_small=True)
def __repr__(self):
return f"OrientationsTable(data=\n{np.array2string(self.data, precision=2, separator=',', suppress_small=True)},\nname_id_map={self.name_id_map})"
def _repr_html_(self):
rows_to_display = 10 # Define the number of rows to display from beginning and end
html = "<table>"
html += "<tr><th>X</th><th>Y</th><th>Z</th><th>G_x</th><th>G_y</th><th>G_z</th><th>id</th><th>nugget</th></tr>"
if len(self.data) > 2 * rows_to_display:
for point in self.data[:rows_to_display]:
html += "<tr><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{}</td><td>{:.2f}</td></tr>".format(*point)
html += "<tr><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td></tr>"
for point in self.data[-rows_to_display:]:
html += "<tr><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{}</td><td>{:.2f}</td></tr>".format(*point)
else:
for point in self.data:
html += "<tr><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{:.2f}</td><td>{}</td><td>{:.2f}</td></tr>".format(*point)
html += "</table>"
return html
def __len__(self):
return len(self.data)