.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\1-tutorials\tutorial.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_examples_1-tutorials_tutorial.py>` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_1-tutorials_tutorial.py: Getting started with Visual Bayesic =================================== Check out the tutorial.xircuit file to see the visual representation of the code below. from argparse import ArgumentParser .. GENERATED FROM PYTHON SOURCE LINES 8-74 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_001.png :alt: tutorial :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_001.png :class: sphx-glr-multi-img * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_002.png :alt: Likelihood mean , Likelihood mean , Likelihood std, Likelihood std :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_002.png :class: sphx-glr-multi-img * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_003.png :alt: Likelihood mean , Likelihood mean , Likelihood std, Likelihood std :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_003.png :class: sphx-glr-multi-img * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_004.png :alt: Likelihood mean , Likelihood mean , Likelihood std, Likelihood std :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_004.png :class: sphx-glr-multi-img * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_005.png :alt: Likelihood mean , Likelihood std :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_005.png :class: sphx-glr-multi-img * .. image-sg:: /examples/1-tutorials/images/sphx_glr_tutorial_006.png :alt: tutorial :srcset: /examples/1-tutorials/images/sphx_glr_tutorial_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Executing: NormalSampler Executing: GammaSampler Executing: NormalSampler Executing: PyroModel Executing: VisualizeModelGraph Executing: FullInference Warmup: 0%| | 0/2000 [00:00, ?it/s] Warmup: 0%| | 10/2000 [00:00, 51.42it/s, step size=2.26e-02, acc. prob=0.673] Warmup: 1%| | 16/2000 [00:00, 41.05it/s, step size=9.33e-02, acc. prob=0.747] Warmup: 1%|▏ | 22/2000 [00:00, 43.93it/s, step size=2.06e-02, acc. prob=0.736] Warmup: 1%|▏ | 29/2000 [00:00, 51.26it/s, step size=5.96e-02, acc. prob=0.762] Warmup: 2%|▏ | 38/2000 [00:00, 62.51it/s, step size=4.23e-02, acc. prob=0.765] Warmup: 2%|▎ | 45/2000 [00:00, 58.66it/s, step size=2.08e-02, acc. prob=0.763] Warmup: 3%|▍ | 62/2000 [00:00, 88.05it/s, step size=9.51e-02, acc. prob=0.781] Warmup: 4%|▍ | 72/2000 [00:01, 90.17it/s, step size=1.94e-01, acc. prob=0.787] Warmup: 4%|▌ | 86/2000 [00:01, 102.42it/s, step size=3.66e-02, acc. prob=0.779] Warmup: 5%|▋ | 97/2000 [00:01, 93.28it/s, step size=1.80e-01, acc. prob=0.789] Warmup: 6%|▋ | 124/2000 [00:01, 139.01it/s, step size=1.89e-01, acc. prob=0.775] Warmup: 8%|▊ | 157/2000 [00:01, 190.31it/s, step size=2.46e-01, acc. prob=0.771] Warmup: 9%|█ | 189/2000 [00:01, 225.25it/s, step size=5.22e-01, acc. prob=0.776] Warmup: 11%|█▏ | 223/2000 [00:01, 246.60it/s, step size=2.41e-01, acc. prob=0.776] Warmup: 13%|█▍ | 256/2000 [00:01, 268.67it/s, step size=1.46e+00, acc. prob=0.776] Warmup: 14%|█▌ | 286/2000 [00:01, 276.60it/s, step size=1.30e-01, acc. prob=0.775] Warmup: 16%|█▋ | 315/2000 [00:02, 260.37it/s, step size=1.14e+00, acc. prob=0.779] Warmup: 17%|█▉ | 342/2000 [00:02, 260.60it/s, step size=5.53e-01, acc. prob=0.779] Warmup: 19%|██ | 379/2000 [00:02, 289.90it/s, step size=5.31e-01, acc. prob=0.780] Warmup: 21%|██▎ | 414/2000 [00:02, 305.36it/s, step size=7.11e-01, acc. prob=0.782] Warmup: 22%|██▍ | 446/2000 [00:02, 306.05it/s, step size=5.73e-01, acc. prob=0.783] Warmup: 24%|██▌ | 477/2000 [00:02, 272.23it/s, step size=2.64e-01, acc. prob=0.781] Warmup: 25%|██▊ | 506/2000 [00:02, 254.02it/s, step size=5.71e-01, acc. prob=0.782] Warmup: 27%|██▉ | 535/2000 [00:02, 262.90it/s, step size=4.05e-01, acc. prob=0.782] Warmup: 28%|███▏ | 569/2000 [00:02, 283.40it/s, step size=2.48e-01, acc. prob=0.782] Warmup: 30%|███▎ | 603/2000 [00:03, 299.07it/s, step size=3.81e-01, acc. prob=0.783] Warmup: 32%|███▍ | 635/2000 [00:03, 304.34it/s, step size=3.29e-01, acc. prob=0.784] Warmup: 33%|███▋ | 666/2000 [00:03, 301.85it/s, step size=3.87e-01, acc. prob=0.784] Warmup: 35%|███▊ | 703/2000 [00:03, 321.55it/s, step size=6.87e-01, acc. prob=0.786] Warmup: 38%|████▏ | 751/2000 [00:03, 366.89it/s, step size=6.34e-01, acc. prob=0.786] Warmup: 40%|████▎ | 791/2000 [00:03, 375.60it/s, step size=9.87e-01, acc. prob=0.787] Warmup: 42%|████▌ | 832/2000 [00:03, 383.18it/s, step size=4.25e-01, acc. prob=0.787] Warmup: 44%|████▊ | 871/2000 [00:03, 374.22it/s, step size=6.27e-01, acc. prob=0.788] Warmup: 45%|████▉ | 909/2000 [00:03, 335.44it/s, step size=5.71e-01, acc. prob=0.788] Warmup: 47%|█████▏ | 949/2000 [00:04, 350.53it/s, step size=1.08e+00, acc. prob=0.788] Warmup: 49%|█████▍ | 985/2000 [00:04, 302.19it/s, step size=8.09e-02, acc. prob=0.787] Sample: 51%|█████ | 1017/2000 [00:04, 247.10it/s, step size=2.84e-01, acc. prob=0.960] Sample: 52%|█████▏ | 1045/2000 [00:04, 242.93it/s, step size=2.84e-01, acc. prob=0.966] Sample: 54%|█████▎ | 1071/2000 [00:04, 217.29it/s, step size=2.84e-01, acc. prob=0.968] Sample: 55%|█████▍ | 1095/2000 [00:04, 197.04it/s, step size=2.84e-01, acc. prob=0.974] Sample: 56%|█████▌ | 1116/2000 [00:04, 190.65it/s, step size=2.84e-01, acc. prob=0.976] Sample: 57%|█████▋ | 1139/2000 [00:05, 198.30it/s, step size=2.84e-01, acc. prob=0.975] Sample: 58%|█████▊ | 1160/2000 [00:05, 190.47it/s, step size=2.84e-01, acc. prob=0.975] Sample: 59%|█████▉ | 1182/2000 [00:05, 194.75it/s, step size=2.84e-01, acc. prob=0.975] Sample: 60%|██████ | 1202/2000 [00:05, 196.12it/s, step size=2.84e-01, acc. prob=0.977] Sample: 61%|██████ | 1222/2000 [00:05, 182.86it/s, step size=2.84e-01, acc. prob=0.978] Sample: 62%|██████▏ | 1241/2000 [00:05, 179.40it/s, step size=2.84e-01, acc. prob=0.978] Sample: 63%|██████▎ | 1260/2000 [00:05, 180.35it/s, step size=2.84e-01, acc. prob=0.978] Sample: 64%|██████▍ | 1282/2000 [00:05, 190.42it/s, step size=2.84e-01, acc. prob=0.977] Sample: 65%|██████▌ | 1302/2000 [00:05, 186.71it/s, step size=2.84e-01, acc. prob=0.976] Sample: 66%|██████▌ | 1324/2000 [00:06, 195.77it/s, step size=2.84e-01, acc. prob=0.977] Sample: 67%|██████▋ | 1344/2000 [00:06, 189.06it/s, step size=2.84e-01, acc. prob=0.977] Sample: 68%|██████▊ | 1366/2000 [00:06, 194.51it/s, step size=2.84e-01, acc. prob=0.974] Sample: 69%|██████▉ | 1386/2000 [00:06, 190.01it/s, step size=2.84e-01, acc. prob=0.975] Sample: 70%|███████ | 1406/2000 [00:06, 187.64it/s, step size=2.84e-01, acc. prob=0.975] Sample: 71%|███████▏ | 1427/2000 [00:06, 193.47it/s, step size=2.84e-01, acc. prob=0.976] Sample: 72%|███████▏ | 1447/2000 [00:06, 182.29it/s, step size=2.84e-01, acc. prob=0.976] Sample: 73%|███████▎ | 1466/2000 [00:06, 182.56it/s, step size=2.84e-01, acc. prob=0.976] Sample: 74%|███████▍ | 1485/2000 [00:06, 182.14it/s, step size=2.84e-01, acc. prob=0.976] Sample: 75%|███████▌ | 1504/2000 [00:07, 173.76it/s, step size=2.84e-01, acc. prob=0.976] Sample: 76%|███████▌ | 1522/2000 [00:07, 171.27it/s, step size=2.84e-01, acc. prob=0.977] Sample: 77%|███████▋ | 1543/2000 [00:07, 180.79it/s, step size=2.84e-01, acc. prob=0.976] Sample: 78%|███████▊ | 1563/2000 [00:07, 185.09it/s, step size=2.84e-01, acc. prob=0.976] Sample: 79%|███████▉ | 1583/2000 [00:07, 188.58it/s, step size=2.84e-01, acc. prob=0.976] Sample: 80%|████████ | 1603/2000 [00:07, 190.64it/s, step size=2.84e-01, acc. prob=0.975] Sample: 81%|████████ | 1623/2000 [00:07, 191.02it/s, step size=2.84e-01, acc. prob=0.975] Sample: 82%|████████▏ | 1643/2000 [00:07, 186.76it/s, step size=2.84e-01, acc. prob=0.975] Sample: 83%|████████▎ | 1663/2000 [00:07, 190.54it/s, step size=2.84e-01, acc. prob=0.974] Sample: 84%|████████▍ | 1688/2000 [00:07, 205.86it/s, step size=2.84e-01, acc. prob=0.973] Sample: 85%|████████▌ | 1709/2000 [00:08, 203.24it/s, step size=2.84e-01, acc. prob=0.974] Sample: 86%|████████▋ | 1730/2000 [00:08, 199.86it/s, step size=2.84e-01, acc. prob=0.974] Sample: 88%|████████▊ | 1751/2000 [00:08, 195.29it/s, step size=2.84e-01, acc. prob=0.974] Sample: 89%|████████▊ | 1771/2000 [00:08, 192.57it/s, step size=2.84e-01, acc. prob=0.975] Sample: 90%|████████▉ | 1793/2000 [00:08, 200.35it/s, step size=2.84e-01, acc. prob=0.975] Sample: 91%|█████████ | 1814/2000 [00:08, 182.84it/s, step size=2.84e-01, acc. prob=0.975] Sample: 92%|█████████▏| 1834/2000 [00:08, 186.80it/s, step size=2.84e-01, acc. prob=0.974] Sample: 93%|█████████▎| 1853/2000 [00:08, 187.00it/s, step size=2.84e-01, acc. prob=0.974] Sample: 94%|█████████▍| 1879/2000 [00:08, 203.60it/s, step size=2.84e-01, acc. prob=0.973] Sample: 95%|█████████▌| 1900/2000 [00:09, 189.62it/s, step size=2.84e-01, acc. prob=0.974] Sample: 96%|█████████▌| 1920/2000 [00:09, 183.61it/s, step size=2.84e-01, acc. prob=0.974] Sample: 97%|█████████▋| 1942/2000 [00:09, 192.47it/s, step size=2.84e-01, acc. prob=0.974] Sample: 98%|█████████▊| 1963/2000 [00:09, 197.21it/s, step size=2.84e-01, acc. prob=0.974] Sample: 99%|█████████▉| 1983/2000 [00:09, 193.07it/s, step size=2.84e-01, acc. prob=0.973] Sample: 100%|██████████| 2000/2000 [00:09, 208.81it/s, step size=2.84e-01, acc. prob=0.974] Executing: ArvizObject C:\Users\MigueldelaVarga\PycharmProjects\VisualBayesic\venv\lib\site-packages\arviz\data\io_pyro.py:157: UserWarning: Could not get vectorized trace, log_likelihood group will be omitted. Check your model vectorization or set log_likelihood=False warnings.warn( Executing: PlotPrior Executing: PlotTrace Executing: PlotDensity Executing: PlotNormalLikelihoodJoy Setting Backend To: AvailableBackends.numpy Finished Executing | .. code-block:: default from argparse import ArgumentParser from xai_components.base import SubGraphExecutor from xai_components.xai_plotting.probabilistic_plot import PlotDensity, PlotNormalLikelihoodJoy, PlotPrior, ArvizObject, PlotTrace, VisualizeModelGraph from xai_components.xai_probabilistic_models.probabilistic_models_I import PyroModel from xai_components.xai_probability_distributions.probabilistic_distributions import GammaSampler, NormalSampler from xai_components.xai_pyro.probabilistic_node import FullInference def main(args): ctx = {} ctx['args'] = args c_0 = VisualizeModelGraph() c_1 = NormalSampler() c_2 = NormalSampler() c_3 = FullInference() c_4 = ArvizObject() c_5 = PlotNormalLikelihoodJoy() c_6 = GammaSampler() c_7 = PlotDensity() c_8 = PlotTrace() c_9 = PlotPrior() c_10 = PyroModel() c_0.model_function = c_10.model c_0.model_function = c_10.model c_0.model_function = c_10.model c_1.name.value = 'Likelihood\n' c_1.mean = c_2.sample c_1.std = c_6.sample c_1.obs.value = [2.12, 2.06, 2.08, 2.05] c_2.name.value = 'Likelihood mean\n' c_2.mean.value = 2.07 c_2.std.value = 0.08 c_3.model = c_10.model c_3.num_samples.value = 1000 c_4.mcmc = c_3.mcmc c_4.prior_predictive_values = c_3.prior_predictive c_4.posterior_predictive_values = c_3.posterior_predictive c_5.az_data = c_4.az_data c_5.mean_sample_name.value = 'Likelihood mean\n' c_5.std_sample_name.value = 'Likelihood std' c_5.y_sample_name.value = 'Likelihood\n' c_5.n_samples.value = 19 c_6.name.value = 'Likelihood std' c_6.concentration.value = 3.3 c_6.rate.value = 1.2 c_7.az_data = c_4.az_data c_8.az_data = c_4.az_data c_9.az_data = c_4.az_data c_10.arg1 = c_1.sample c_0.next = c_3 c_1.next = c_10 c_2.next = c_6 c_3.next = c_4 c_4.next = c_9 c_5.next = None c_6.next = c_1 c_7.next = c_5 c_8.next = c_7 c_9.next = c_8 c_10.next = c_0 next_component = c_2 while next_component: next_component = next_component.do(ctx) if __name__ == '__main__': parser = ArgumentParser() main(parser.parse_args()) print('\nFinished Executing') .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 12.333 seconds) .. _sphx_glr_download_examples_1-tutorials_tutorial.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: tutorial.py <tutorial.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: tutorial.ipynb <tutorial.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_