Note
Click here to download the full example code
2.2: Centered Grid.ΒΆ
Geophysics Preprocessing builds on the centered grid (https://github.com/cgre-aachen/gempy/blob/master/notebooks/tutorials/ch1-3-Grids.ipynb) to precompute the constant part of forward physical computations as for example gravity:
where we can compress the grid dependent terms as
By doing this decomposition an keeping the grid constant we can compute the forward gravity by simply operate:
# Importing gempy
from gempy.assets.geophysics import GravityPreprocessing
# Aux imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.random.seed(1515)
pd.set_option('precision', 2)
g = GravityPreprocessing()
kernel_centers, kernel_dxyz_left, kernel_dxyz_right = g.create_irregular_grid_kernel(resolution=[10, 10, 20],
                                                                                     radius=100)
create_irregular_grid_kernel will create a constant kernel around
the point 0,0,0. This kernel will be what we use for each device.
Out:
array([[-100.        , -100.        ,   -6.        ],
       [-100.        , -100.        ,   -7.2       ],
       [-100.        , -100.        ,   -7.52912998],
       ...,
       [ 100.        ,  100.        ,  -79.90178533],
       [ 100.        ,  100.        , -100.17119644],
       [ 100.        ,  100.        , -126.        ]])
\(t_z\) is only dependent on distance and therefore we can use the kerenel created on the previous cell
Out:
array([-8.71768928e-05, -6.45647022e-05, -3.41579985e-05, ...,
       -1.09610058e-02, -1.41543038e-02, -1.51096613e-02])
To compute tz we also need the edges of each voxel. The distance to the
edges are stored on kernel_dxyz_left and kernel_dxyz_right. We
can plot all the data as follows:
fig = plt.figure(figsize=(13, 7))
plt.quiver(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
           a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(),
           np.zeros(231),
           tz.reshape(11, 11, 21)[5, :, :].ravel(), label='$t_z$', alpha=.3
           )
plt.plot(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
         a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(), 'o', alpha=.3, label='Centers')
plt.plot(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel() - b[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
         a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(), '.', alpha=.3, label='Lefts')
plt.plot(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
         a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel() - b[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(), '.', alpha=.6,
         label='Ups')
plt.plot(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel() + c[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
         a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(), '.', alpha=.3, label='Rights')
plt.plot(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
         a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel() + c[:, 2].reshape(11, 11, 21)[5, :, :].ravel(), '.', alpha=.3,
         label='Downs')
plt.xlim(-200, 200)
plt.ylim(-200, 0)
plt.legend()
plt.show()
Just the quiver:
fig = plt.figure(figsize=(13, 7))
plt.quiver(a[:, 0].reshape(11, 11, 21)[5, :, :].ravel(),
           a[:, 2].reshape(11, 11, 21)[:, 5, :].ravel(),
           np.zeros(231),
           tz.reshape(11, 11, 21)[5, :, :].ravel()
           )
plt.show()
Remember this is happening always in 3D:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(a[:, 0], a[:, 1], a[:, 2], c=tz)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
Total running time of the script: ( 0 minutes 0.369 seconds)